$$
\left(R_{0} / R_{q}\right)_{25^{\circ} \mathrm{C}}=0.564 \pm .001
$$

for the monitored sample. Thus a measurement of the initial resistance of a specimen installed in the anvil apparatus is sufficient to determine $R_{o}\left(25^{\circ} \mathrm{C}\right)$ for that specimen.
(4) In order to determine the temperature and pressure coefficient of R_{o} for each sample, so that $R_{0}\left(T_{\text {anneal }}\right)$ can be calculated, the following measurements were performed:

First, the specific temperature coefficient of resistance of a quenched sample was measured. The sample was then highly ordered, and the coefficient remeasured. The ratio of these coefficients was found to be 0.76 . The pressure coefficient of resistance at constant temperature of both a highly ordered and slightly ordered sample was measured to 20 kbar at $100^{\circ} \mathrm{C}$, and found to be nearly linear continuous functions. The results were as follows:

$$
\begin{aligned}
& \frac{1}{R_{q}}\left(d R_{q} / d P\right)_{T}=.03 \% / \mathrm{kbar} ; \text { slightly ordered } \\
& \frac{1}{R_{0}}\left(\frac{d R_{o}}{d P}\right)_{T}=.8 \% / \mathrm{kbar} ; \text { highly ordered }
\end{aligned}
$$

Since the resistance of both highly ordered and slightly ordered samples was found to be a continuous function of pressure and temperature, it was assumed that the specific temperature coefficient of resistance of each specimen in the quenched condition, $1 / R_{q}\left(d R_{q} / d T\right)_{P, S}$, was related to the specific temperature coefficient

